Assessing the Cardiotoxicity of 31 Compounds Using a Multiplexed Kinetic Image Cytometry[®] (KIC[®])-based Assay: Harnessing the Predictive Power of Human iPSC-**Cardiomyocytes for Early Drug Development**

Ranor C. B. Basa^{*†a}, Randall S. Ingermanson^a, Filiberto Catalan-Perez^a, Ricardo Serrano^b, Ariel Wang^a, Alyson Smith^a, Jeffrey M. Hilton^a, Patrick M. McDonough^a, Cherie Handley^a, Lilian Harrison^a, Ameena Pascua^a, Mark Mercola^b, Jeffrey H. Price^{†a,c}

- Cardiotoxicity (arrhythmias + structural cardiomyocyte damage, *i.e.*, **myopathy)** is a leading cause of drug failures clinically and post-FDA approval, and of adverse drug reactions (ADRs).
- Animal studies are laborious, expensive, and poorly predictive of clinical outcomes (arrhythmia 55.4%¹–85.4%^{2,3}; myopathy 50%⁴–78.5%⁵).
- Single-cell Kinetic Image Cytometry[®] (KIC[®]) of hiPSC models captures cellular heterogeneity ("averaged out" by whole-well/-field platforms) for higher **sensitivity** & **clinical predictivity** (arrhythmia: 90–95%⁶⁻¹⁰; myopathy: 95.6%¹¹).
- **KIC[®] of patient-derived hiPSCs** scales to "**clinical trials in a dish**"(CTiD) of 100s of candidate drugs for **high efficacy** and **safety** across gene mutations for a fraction that of animals.
- By multiplexing **Ca²⁺, voltage, mitochondrial membrane potential**, and contraction in metabolically-matured hiPSC- CMs¹², our multiplexed assay correctly predicted clinical outcomes of 30/31 drugs (classes: 6 Ca²⁺/SR, 10 plasma membrane/ion channel, 8 mitochondrial/myosin, 7 negative).
- hiPSC models enable **highly scalable**, **less costly, physiologically relevant** screens that are **more clinically predictive than animals**.

	#	Drug Name	Cardiac Effect*	Action/Cardiac Target Class	Target(s)	(AG)onist or - (ANT)agonist	AP
Dis ad	1	Milrinone	HF– (HF+, Arr+)	SR	PDE3	ANT	[50] ▲APD75, ▲Ampl, ▲BPM, ▲U.Vel, ▲D.Vel
	2	Flecainide	Arr–	SR	Na _v 1.5 (I _{Na}), RyR2	ANT, ANT	[9.49] Q
	3	Istaroxime	HF–	SR	SERCA2, Na ⁺ /K ⁺ ATPase	AG, ANT	[0.0125] ▼APD75; [0.025] ▲ Tri
	4	Cisapride	Arr+	AP	hERG (I _{Kr})	ANT	[0.125] ▲APD75
	5	Diltiazem	Arr–	AP	Ca _V 1.2 (I _{Ca,L} / <i>I_{Ca,N}</i>)	ANT	[0.625], ▼BPM, ▼APD75
	6	Propranolol (racemic mixture)	Arr–	AP	<i>S(−)</i> : β-AR, <i>R(+)</i> : Na _v 1.5 (I _{Na})	ANT, ANT	[3.125] ▼BPM
	7	Mexiletine	Arr–	AP	Na _V 1.5 (I _{Na,L}), hERG (I _{Kr})	ANT	[0.32] ▼U.Vel
	8	Sotalol	Arr+	AP	hERG (I _{Kr})	ANT	[3.25] ▼BPM
	9	Ivabradine	HF-	AP	HCN (I _f), hERG (I _{Kr})	ANT, ANT	[1.25] ▲Tri
	10	Ibutilide	Arr- / Arr+	AP	hERG (I _{Kr})	ANT	[0.0156] ▲APD75
	11	Quinidine	Arr–	AP	hERG (I _{Kr})	ANT	[0.156] ▼D.Vel
	12	Dofetilide	Arr+ / Arr-	AP	hERG (I _{Kr})	ANT	[0.0156] 🔺 Tri
	13	Isoproterenol	Arr–	AP	β-AR, K _V 7.1 (I _{Ks})	AG, AG	[0.01] ▼Tri, ▲D.Vel
	14	Trimetazidine	HF-	CON / MT	Mt LC 3-KAT	ANT	[50] 🔺 Tri
	15	Levosimendan	HF–	CON	Ca ²⁺ →TnC	AG	[50] ▲APD75
	16	Omecamtiv	HF– (failed trial)	CON	Myosin	AG	[2.5] ▼Tri, ▲APD75
	17	Mavacamten	HF–	CON	Myosin	ANT	[0.095] ▲APD75
	18	Vandetanib	Arr+, HF+	All	hERG (I _{Kr})	ANT	[1.25] ▲APD75
	19	Sorafenib	HF+	All	SERCA2 / cytotoxic	ANT	[0.00032] ▼U.Vel
	20	Regorafenib	HF+	All	I _{Na,L}	AG	[31.6] ▼ BPM
	21	Carboplatin	HF+	All	I _{Ca,L}	AG	[12.5] ▲APD75
	22	Ranolazine	Arr–	SR / AP	RyR2 / I _{Na}	ANT	[25] ▲APD75, ▲Tri
	23	Veratridine	Arr+ / Q?	AP	Na _V 1.5, Na _V 1.8 (I _{Na})	ANT	[0.312] ▲APD75
	24	Thapsigargin	Q	SR	SERCA	ANT	[0.625] ▼APD75
	25	Caffeine	Neg	Neg	_	_	ns
	26	Loratadine	Neg	Neg	_	_	[0.2] ▲APD75
	27	Acetaminophen	Neg	Neg	_	_	ns
	28	Doxycycline	Neg	Neg	_	_	ns
	29	Ciprofloxacin	Neg	Neg	_	_	ns
de	30	Oseltamivir	Neg	Neg	_	_	ns
S	31	Aspirin	Neg	Neg	_	_	ns

† Measurement(s) of Cardiac Effect: [X]=lowest dose at which significant changes were observed, in µM; ▲=increase/▼=decrease; AP=action potential/membrane voltage; SR=sarcoplasmic reticulum/Ca²⁺ transient; CON=contraction (APD/CTD/MTD75= \underline{A} ction \underline{P} otential/ $\underline{C}a^{2+}$ \underline{T} ransient/ \underline{M} otion [contractile] \underline{T} ransient \underline{D} uration, 75% down from peak; U.Vel/D.Vel=max rate of peak upstroke/downstroke; Ampl=peak amplitude; Tri=triangulation; BPM=beats/min; Peak#=number of contractile peaks); MT=mitochondria (MtMP = mitochondrial membrane potential); *ns*=no significant changes observed

^a Vala Sciences, Inc., 6370 Nancy Ridge Dr., Suite 106, San Diego, CA, USA ^b Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA ^c Scintillon Institute, San Diego, CA, USA † 🔀 rbasa@valasciences.com, jprice@valasciences.com *

1186. PMID: 38300851.

5. Bhatt, S., et al. Preclinical to Clinical Translation of Hemodynamic Effects in Cardiovascular Safety Pharmacology Studies. Toxicol Sci 169, 272-279 (2019). PMID: 30726989. 5. Lu, H.R., *et al.* High Throughput Measurement of Ca++ Dynamics in Human Stem Cell-Derived Cardiomyocytes by Kinetic Image Cytometery: A Cardiac Risk Assessment Characterization Using a Large Panel of Cardioactive and Inactive Compounds. *Toxicol Sci* 37714406. 14. Seal, S., et al. Insights into Drug Cardiotoxicity from Biological and Chemical Data: The First Pfeiffer, E.R., et al. Specific prediction of clinical QT prolongation by kinetic image cytometry Public Classifiers for FDA Drug-Induced Cardiotoxicity Rank. J Chem Inf Model 64, 4, 1172-

148, 503-516 (2015). PMID: 26358003.

in human stem cell derived cardiomyocytes. J Pharmacol Toxicol Methods 81, 263-273

2. Feyen, D.A.M., et al. Metabolic Maturation Media Improve Physiological Function of Human iPSC-Derived Cardiomyocytes. Cell Rep 32, 107925 (2020). PMID: 32697997. 13. Qu, Y., *et al.* The largest reference list of 1318 human drugs ranked by risk of drug-induced cardiotoxicity using FDA labeling. Drug Discov Today 28, 11, 103770 (2023). PMID:

Now seeking pharma partners for validating our approach!